

Material	Field		Total of teaching hours : 92 hrs		
		Microscopic	Course	Supervised work	Lab work
MT 13.5	3 ECTS credits	approach	36 hrs		24 hrs
			4 hrs evaluation - 28 hrs individual work		

Objectives

- Introduction to the Science of Materials. The goal is to provide the tools necessary for understanding the properties of the different materials and to predict their behaviour.
- Acquire knowledge of the major families of materials (metals, polymers, ceramics, and composites) in their structures and properties.
- Make the link between microscopic structures and macroscopic properties.

(taxonomic level : application and analysis)

Prerequisites and links to other modules

- Classification of different atoms, energy states of atoms, the material's architecture (crystallography, link types)

Macroscopic thermodynamics
 Concepts of probability

	-		
Chapter 1	 Electronic structure of the atom 		
	◦ Links		
Atomic and molecular	 Organisation of a solid state (amorphous, crystal) 		
architecture	 Crystallography 		
Chapter 2	 Empirical approach (highlighting the concepts of constraint and deformation) 		
	 Modelling of the elastic response of a system of two atoms 		
Elasticity and elastic limit	 Generalisation of the model into the crystalline solid 		
	 Highlighting of the inadequacy of the model to predict the elasticity limits 		
Chapter 3	 Specific defects (gaps, impurities, solid solutions) 		
-	 Linear defects (dislocations) and the role of dislocations in the plastic deformation 		
Crystalline defects. Diffusion	• Defects with two dimensions (external surfaces, surface energy, grain boundaries,		
•	twin crystals)		
	 Diffusion mechanisms (lacunar and interstitial) Fick's laws 		
Chapter 4	Hardening		
•	- Effect of the microstructure		
Plasticity and crystalline defects	- Effect of solid solution		
······································	- Structural hardening		
Chapter 5	 Definitions (phases, solvent, solute, solid solution, defined compound, etc.) 		
	 Variance (Gibbs' phase rule) 		
Balance diagrams	 Rules for establishing and reading binary diagrams 		
-	 Using diagrams (law of mass action) 		
	 Application to the iron-carbon diagram; micro-structure of steels and irons 		