

Second Cycle

Year 4

I4.8 Nantes ENERGY AND AUTOMATED PROCESSES

Targeted professions

Industrial Process / Energetic Process engineer / Maintenance engineer / Energy Efficiency engineer (Research department, Calculation, buildings, environmental engineering).

Topic : Energy & Automated Processes

Competencies to be acquired :

In the framework of the sizing of a servo-control energy system, the student must be able to :

Process and control	 Use acquisition/control software: Labview. Explain and interpret a functioning and a malfunction of an existing control loop. Control a process, create a control loop, programme a PID. Control a motor / electric resistance List the components of an energy facility.
Energetics tools : digital simulation	 Use a CFD 3D calculation code: StarCCM. Use 1D thermo-fluid software: Flowmaster for the networks (pressure loss, saturation pressure, etc.). Conduct calculations / modelling with a critical mind. Analyse the result. Modify the software parameters to obtain a quantitative result.
Energetics tools : experimental measurements	 Measure a physical magnitude: choose the instrumentation and the acquisition (sensor, measuring chain, digital and analogue data-processing). Analyse a measurement (temperature, pressure, humidity, current, voltage). List the safety tools in the business.

Organisation

The majority of the documents are in English. Some lectures/tutorials and practical exercises are in English.

Lectures / Tutorials	Computational Fluid Dynamic (CFD)
	I urbulence (modelling)
	 Finite volume method
	 Resolution strategy & algorithms
	 Pressure loss in dense networks
	Metrology
	Acoustics
Practical Exercises	CFD : 5 Ex of 2 hrs each + 2 hrs of assessment.
	Discovery Tutorial, Geometry, Data structure, Heat transfer,
	Simulation of a cylinder.
	Practical Assessment :
	Ex 1 : Signal acquisition & Fourier transform (spectral aliasing and
	Shannon criteria).
	Ex 2 : House No.1, model instrumentation.
	Ex 3: House No. 2, open-loop and closed-loop control.
	Ex 4: Flowmaster, network balancing.
Assessment methods	Two 2 hrs <mark>DS</mark>
	2 hrs practical assessment for CFD
	Exercise Report

Project	24 hrs scheduled in the timetable.
	About 90 hrs of independent work by student.
	Groups of 4 to 6 students.
	Subject suggested by a business.
	Assessment : report and oral viva.
Practical exercise	Application of Thermal Regulations
Extended Energy & Automated Processes Topic	Lectures/ Tutorials
	Energy Audit Thermal Regulations (TR 2005) – Insula France
	Environmental Management
	Sizing system project (Hvac, heating)
	Assessments: 2 hes DS/MCQ