

Mechanics Field		Structural Mechanics 2	Total of teaching hours : 92 hrs		
			Course	Supervised work	Lab work
GM 13.6	3 ECTS credits		42 hrs	12 hrs	
			4 hrs evaluation + 22 hrs individual work		

Structural Mechanics 2 : Methods for solving Statics and Dynamics problems

Objectives

- Learn how to put a problem of linear elasticity into equations and learn how to implement a resolution method. Learn the basic principles of the method of finite elements applied to the matrix calculus of structures, the formulation and properties of the elements used.
- Be able to use computer calculation tools in Mechanical Engineering.
- Understand and learn to describe the concepts of frequencies and own modes, and depreciation.

(taxonomic level : application and analysis)

Pre-requisites and links to other modules

- o Dynamics of the non-deformable solid : matrix of inertia, Fundamental Principle of Dynamics
- System with a degree of freedom : free and forced oscillations, various cases of depreciation ($0 < \xi < 1, \xi = 1, \xi > 1$)
- o Module GM 13-5

Calculation methods in elasticity Indicative duration : 14 hrs	 Method of displacement (Navier's equations) Methods of constraints (Beltrami's equations) Special cases: flat deformations, flat constraints, Airy's function, concentration of constraints Thermo-elasticity : Hooke's law equations - Duhamel
Method of Finite Elements applied to Structural Mechanics Indicative duration : 14 hrs	 General presentation Continuous environments and discrete structures : the concept of finite element, elementary and global, Principle of Virtual Works Matrix writing of structural mechanics : equilibrium equations, generalised Hooke's law, relations between deformation and displacement, energy from deformation Matrix of rigidity and matrix equilibrium equations of nodes F=Ku: elementary level, assembling of matrices, setting up on a system of springs 1D elements (bar, beam) 2D elements (membranes, plates and shells) 3D elements Modelling and mesh (practical advice) General recommendations Fineness of the mesh Continuity Rigid body movements
Introduction to Structure Dynamics Indicative duration : 16 hrs	 System with a degree of freedom : reminders, bandwidth, transfer function, resolution of the differential equations of the movement, viscous and structural depreciations Lagrange's equations System with two degrees of freedom System with n degrees of freedom Putting into equations of movement (Basic Principle of Dynamics, Lagrange's equations) Putting into equations by the Method of Finite Elements Reminder : matrix of straightness