

Mechanics Field			Total of teaching hours : 92 hrs		
		Structural Mechanics 1	Course	Supervised work	Lab work
GM	3 ECTS credits		42 hrs		24 hrs
13.5			4 hrs evaluation + 22 hrs individual work		

Structural Mechanics 1 : Elastic Solids and Theory of Beams

Objectives

- Learn to describe and understand a constraint condition-deformation in a continuous environment. Be able to use deformation measurements by extensionetry on the structures.
- Learn how to model a beam type structure and learn how to perform traditional sizing calculations in terms of resistance and deformation (engineer approach).
- Discuss the concepts of elastic energy from deformation of a structure (energy approach of structures). Address the concepts of instability of structures (buckling).

(taxonomic level : application and analysis)

Pre-requisites and links to other modules

Mathematics

- $\circ\,$ Matrix calculus: own values, own vectors, diagonalisation, change of basis
- o Integral calculation : differential equations, integrals:
- Resistance of Materials
- Geometric definition of a beam
- o Assumptions : on the material, on the efforts applied, on the deformation, on the small displacements, Saint-Venant
- Concept of constraint
- Phenomenon of concentration of constraints
- $\circ\,$ Description of the traction test
- Properties of the straight sections : centre of gravity, static moments, quadratic moments, main axes
- o Torsor of cohesion and layout of diagrams, equation of local balance of a beam
- Simple stresses : traction compression, pure shear, bending (calculation of the distorted elastic), twisting of beams with circular cross-section
- Compound stresses (overlay principle)

• Order 1 hyperstatism

Linear elasticity Reminder of mathematics : matrix calculus and operators Deformation study (tensor of deformations, Mohr's circles, flat deformation condition) Indicative duration : 14 hrs Study of constraints (vector constraint, tensor, Mohr's circles, flat deformation condition) Study of constraints (vector constraint, tensor, Mohr's circles, flat constraint, extensometry by gauges) A special elastic solid : beam Basic assumptions of the theory Reminder : geometry of sections (centre of gravity, quadratic moments, etc.) and beam statics (Basic Principle of static, principle of cutting, digrams etc.) Indicative duration : 28 hrs Reminder : geometry of sections (centre of gravity, quadratic moments, etc.) and beam statics (Basic Principle of Static, principle of cutting, digrams etc.) Tensor of constraints associated with the straight section of a beam Relationship between the constraints and cohesion efforts Study of structures composed of beams (gantries)			
 condition, equation of local balance, Cauchy's reciprocity) Elastic linear behaviour (traction test, Hooke's law, potential elastic energy, generalised elastic scale, permissible constraint, equivalent constraint, extensometry by gauges) A special elastic solid : beam Basic assumptions of the theory Reminder : geometry of sections (centre of gravity, quadratic moments, etc.) and beam statics (Basic Principle of Static, principle of cutting, diagrams etc.) Tensor of constraints associated with the straight section of a beam Relationship between the constraints and cohesion efforts Study of simple stresses (tensors of constraints, deformations, fields of displacement and potential elastic energy) Compound stresses and criterion/criteria for sizing (concentration of constraints phenomenon, safety coefficients) Energy from structures Study of structures composed of beams (gantries) Resolution of hyperstatic systems Buckling Specific cases of sizing (exercises applied) : Assemblies (fastenings) Shocks (taking account of the dynamic effects: for example lift cable) Thermal expansion (thermo-elastic 1 D) TP 1 Characterisation of a beam by bending) TP 2 Bending - twisting of a tube : RdS approach and elasticity (Mohr's circle, extensometry), overlay principle TP 3 Study of a structure in flat elasticity: RdS approach and elasticity (in cylindrical coordinates), used of the photoelasticity : RdS approach and elasticity (in cylindrical coordinates), used of the photoelasticity : RdS approach and elasticity (in cylindrical coordinates), used of the photoelasticity : RdS approach and elasticity (in cylindrical coordinates), used of the photoelasticity : study of sections, deflected bending, Maxwell- Betti's theor	Linear elasticity	 Deformation study (tensor of deformations, Mohr's circles, flat deformation 	
 Elastic linear behaviour (traction test, Hooké's law, potential elastic energy, generalised elastic area, permissible constraint, equivalent constraint, extensometry by gauges) A special elastic solid : beam Basic assumptions of the theory Reminder : geometry of sections (centre of gravity, quadratic moments, etc.) and beam statics (Basic Principle of Static, principle of cutting, diagrams etc.) Theory of beams Indicative duration : 28 hrs Relationship between the constraints and cohesion efforts Study of simple stresses (tensors of constraints, deformations, fields of displacement and potential elastic energy) Compound stresses and criterion/criteria for sizing (concentration of constraints phenomenon, safety coefficients) Energy from structures Study of structures composed of beams (gantries) Resolution of hyperstatic systems Buckling Specific cases of sizing (exercises applied) : Assemblies (flastenings) Specific cases of sizing on the mechanical characteristics of a metallic material : Young's modulus, Poisson ratio, constraint limits, etc. (traction and/or compression test, deformation of a beam by bending) TP 1 Characterisation of a tube : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticity : study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity	Indicative duration : 14 hrs	 Study of constraints (vector constraint, tensor, Mohr's circles, flat constraint 	
generalised elastic area, permissible constraint, equivalent constraint, extensometry by gauges) A special elastic solid : beam Basic assumptions of the theory Reminder : geometry of sections (centre of gravity, quadratic moments, etc.) and beam statics (Basic Principle of Static, principle of cutting, diagrams etc.) Tensor of constraints associated with the straight section of a beam Relationship between the constraints and cohesion efforts Study of simple stresses (tensors of constraints, deformations, fields of displacement and potential elastic energy) Compound stresses and criterion/criteria for sizing (concentration of constraints phenomenon, safety coefficients) Energy from structures Study of structures composed of beams (gantries) Resolution of hyperstatic systems Buckling Specific cases of sizing (exercises applied) :			
 A special elastic solid : beam Basic assumptions of the theory Basic assumptions of the theory Reminder : geometry of sections (centre of gravity, quadratic moments, etc.) and beam statics (Basic Principle of Static, principle of cutting, diagrams etc.) Tensor of constraints associated with the straight section of a beam Relationship between the constraints and cohesion efforts Study of simple stresses (tensors of constraints, deformations, fields of displacement and potential elastic energy) Compound stresses and criterion/criteria for sizing (concentration of constraints phenomenon, safety coefficients) Energy from structures Study of structures composed of beams (gantries) Resolution of hyperstatic systems Buckling Specific cases of sizing (exercises applied) : Assemblies (fastenings) Shocks (taking account of the dynamic effects: for example lift cable) TP 1 Characterisation of the mechanical characteristics of a metallic material : Young's modulus, Poisson ratio, constraint limits, etc. (traction and/or compression test, deformation of a beam by bending) TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity 			
Theory of beams Basic assumptions of the theory Reminder : geometry of sections (centre of gravity, quadratic moments, etc.) and beam statics (Basic Principle of Static, principle of cutting, diagrams etc.) Tensor of constraints associated with the straight section of a beam Relationship between the constraints and cohesion efforts Study of simple stresses (tensors of constraints, deformations, fields of displacement and potential elastic energy) Compound stresses and criterion/criteria for sizing (concentration of constraints phenomenon, safety coefficients) Energy from structures Study of structures composed of beams (gantries) Resolution of hyperstatic systems Buckling Specific cases of sizing (exercises applied) : Assemblies (fastenings) Shocks (taking account of the dynamic effects: for example lift cable) The 1 Characterisation of the mechanical characteristics of a metallic material :			
Theory of beams Reminder : geometry of sections (centre of gravity, quadratic moments, etc.) and beam statics (Basic Principle of Static, principle of cutting, diagrams etc.) Tensor of constraints associated with the straight section of a beam Relationship between the constraints and cohesion efforts Study of simple stresses (tensors of constraints, deformations, fields of displacement and potential elastic energy) Compound stresses and criterion/criteria for sizing (concentration of constraints phenomenon, safety coefficients) Energy from structures Study of structures composed of beams (gantries) Resolution of hyperstatic systems Buckling Specific cases of sizing (exercises applied) : Assemblies (fastenings) Shocks (taking account of the dynamic effects: for example lift cable) Thermal expansion (thermo-elastic 1 D)			
Indicative duration : 28 hrs beam statics (Basic Principle of Static, principle of cutting, diagrams etc.) • Tensor of constraints associated with the straight section of a beam • Relationship between the constraints and cohesion efforts • Study of simple stresses (tensors of constraints, deformations, fields of displacement and potential elastic energy) • Compound stresses and criterion/criteria for sizing (concentration of constraints phenomenon, safety coefficients) • Energy from structures • Study of structures composed of beams (gantries) • Resolution of hyperstatic systems • Buckling • Specific cases of sizing (exercises applied) : • Assemblies (fastenings) • Shocks (taking account of the dynamic effects: for example lift cable) • Thermal expansion (thermo-elastic 1 D) TP 1 Characterisation of the mechanical characteristics of a metallic material : Young's modulus, Poisson ratio, constraint limits, etc. (traction and/or compression test, deformation), overlay principle TP 2 Bending - twisting of a tube : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures	The environment		
Indicative duration : 28 hrs Tensor of constraints associated with the straight section of a beam Relationship between the constraints and cohesion efforts Study of simple stresses (tensors of constraints, deformations, fields of displacement and potential elastic energy) Compound stresses and criterion/criteria for sizing (concentration of constraints phenomenon, safety coefficients) Energy from structures Study of structures composed of beams (gantries) Resolution of hyperstatic systems Buckling Specific cases of sizing (exercises applied) :	Theory of beams		
 Relationship between the constraints and cohesion efforts Study of simple stresses (tensors of constraints, deformations, fields of displacement and potential elastic energy) Compound stresses and criterion/criteria for sizing (concentration of constraints phenomenon, safety coefficients) Energy from structures Study of structures composed of beams (gantries) Resolution of hyperstatic systems Buckling Specific cases of sizing (exercises applied) : Assemblies (fastenings) Shocks (taking account of the dynamic effects: for example lift cable) Thermal expansion (thermo-elastic 1 D) TP 1 Characterisation of the mechanical characteristics of a metallic material : Young's modulus, Poisson ratio, constraint limits, etc. (traction and/or compression test, deformation of a beam by bending) TP 2 Bending - twisting of a tube : RdS approach and elasticity (Mohr's circle, extensometry), overlay principle TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures 	Indicative duration : 28 brs		
 Study of simple stresses (tensors of constraints, deformations, fields of displacement and potential elastic energy) Compound stresses and criterion/criteria for sizing (concentration of constraints phenomenon, safety coefficients) Energy from structures Study of structures composed of beams (gantries) Resolution of hyperstatic systems Buckling Specific cases of sizing (exercises applied) : Assemblies (fastenings) Shocks (taking account of the dynamic effects: for example lift cable) Thermal expansion (thermo-elastic 1 D) TP 1 Characterisation of the mechanical characteristics of a metallic material : Young's modulus, Poisson ratio, constraint limits, etc. (traction and/or compression test, deformation of a beam by bending) TP 2 Bending - twisting of a tube : RdS approach and elasticity (Mohr's circle, extensometry), overlay principle TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures 			
 Compound stresses and criterion/criteria for sizing (concentration of constraints phenomenon, safety coefficients) Energy from structures Study of structures composed of beams (gantries) Resolution of hyperstatic systems Buckling Specific cases of sizing (exercises applied) : Assemblies (fastenings) Shocks (taking account of the dynamic effects: for example lift cable) Thermal expansion (thermo-elastic 1 D) TP 1 Characterisation of the mechanical characteristics of a metallic material : Young's modulus, Poisson ratio, constraint limits, etc. (traction and/or compression test, deformation of a beam by bending) TP 2 Bending - twisting of a tube : RdS approach and elasticity (Mohr's circle, extensometry), overlay principle TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures 			
phenomenon, safety coefficients) Energy from structures Study of structures composed of beams (gantries) Resolution of hyperstatic systems Buckling Specific cases of sizing (exercises applied) : Assemblies (fastenings) Shocks (taking account of the dynamic effects: for example lift cable) Thermal expansion (thermo-elastic 1 D) TP 1 Characterisation of the mechanical characteristics of a metallic material : Young's modulus, Poisson ratio, constraint limits, etc. (traction and/or compression test, deformation of a beam by bending) TP 2 Bending - twisting of a tube : RdS approach and elasticity (Mohr's circle, extensometry), overlay principle TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending. diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures		displacement and potential elastic energy)	
 Energy from structures Study of structures composed of beams (gantries) Resolution of hyperstatic systems Buckling Specific cases of sizing (exercises applied) : Assemblies (fastenings) Shocks (taking account of the dynamic effects: for example lift cable) Thermal expansion (thermo-elastic 1 D) TP 1 Characterisation of the mechanical characteristics of a metallic material : Young's modulus, Poisson ratio, constraint limits, etc. (traction and/or compression test, deformation of a beam by bending) TP 2 Bending - twisting of a tube : RdS approach and elasticity (Mohr's circle, extensometry), overlay principle TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures 			
 Study of structures composed of beams (gantries) Resolution of hyperstatic systems Buckling Specific cases of sizing (exercises applied) : 			
 Resolution of hyperstatic systems Buckling Specific cases of sizing (exercises applied) : Assemblies (fastenings) Shocks (taking account of the dynamic effects: for example lift cable) Thermal expansion (thermo-elastic 1 D) TP 1 Characterisation of the mechanical characteristics of a metallic material : Young's modulus, Poisson ratio, constraint limits, etc. (traction and/or compression test, deformation of a beam by bending) TP 2 Bending - twisting of a tube : RdS approach and elasticity (Mohr's circle, extensometry), overlay principle TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures 			
 Buckling Specific cases of sizing (exercises applied) :			
 Specific cases of sizing (exercises applied) : Assemblies (fastenings) Shocks (taking account of the dynamic effects: for example lift cable) Thermal expansion (thermo-elastic 1 D) TP 1 Characterisation of the mechanical characteristics of a metallic material : Young's modulus, Poisson ratio, constraint limits, etc. (traction and/or compression test, deformation of a beam by bending) TP 2 Bending - twisting of a tube : RdS approach and elasticity (Mohr's circle, extensometry), overlay principle TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures 			
 Assemblies (fastenings) Shocks (taking account of the dynamic effects: for example lift cable) Thermal expansion (thermo-elastic 1 D) TP 1 Characterisation of the mechanical characteristics of a metallic material : Young's modulus, Poisson ratio, constraint limits, etc. (traction and/or compression test, deformation of a beam by bending) TP 2 Bending - twisting of a tube : RdS approach and elasticity (Mohr's circle, extensometry), overlay principle TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures 			
Shocks (taking account of the dynamic effects: for example lift cable) Thermal expansion (thermo-elastic 1 D) TP 1 Characterisation of the mechanical characteristics of a metallic material : Young's modulus, Poisson ratio, constraint limits, etc. (traction and/or compression test, deformation of a beam by bending) TP 2 Bending - twisting of a tube : RdS approach and elasticity (Mohr's circle, extensometry), overlay principle TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Bett's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures			
• Thermal expansion (thermo-elastic 1 D) TP 1 Characterisation of the mechanical characteristics of a metallic material : Young's modulus, Poisson ratio, constraint limits, etc. (traction and/or compression test, deformation of a beam by bending) TP 2 Bending - twisting of a tube : RdS approach and elasticity (Mohr's circle, extensometry), overlay principle TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Bett's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures			
6 sessions of Lab work (24 hrs) Young's modulus, Poisson ratio, constraint limits, etc. (traction and/or compression test, deformation of a beam by bending) TP 2 Bending - twisting of a tube : RdS approach and elasticity (Mohr's circle, extensometry), overlay principle TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures		Thermal expansion (thermo-elastic 1 D)	
test, deformation of a beam by bending) TP 2 Bending - twisting of a tube : RdS approach and elasticity (Mohr's circle, extensometry), overlay principle TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures			
extensometry), overlay principle TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures	6 sessions of Lab work (24 hrs)		
TP 3 Study of a structure in flat elasticity : RdS approach and elasticity (in cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures		TP 2 Bending - twisting of a tube : RdS approach and elasticity (Mohr's circle,	
cylindrical coordinates), use of the photoelasticimetry TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures			
TP 4 Isostatic beam by bending : diagrams, measurement of the deformed, study of sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures			
sections, deflected bending, Maxwell- Betti's theorem of reciprocity TP 5 Energy of structures approach : isostatic and hyperstatic gantries and/or trellis structures			
structures			
TP 6 Curve beams or Trellis type structures			
		TP 6 Curve beams or Trellis type structures	

Educational approaches and assessment methods

Lecture : video-projected lesson and paper support with holes to be filled in by the student in the session, available on the school's website.

Lab Work : preparation of Lab works before each session, report to be written on a document to be filled in, supports available on the school's website.

Assessment methods :

- Course mark (60%): two supervised assignments of 2 hrs, just after half-way through the course (coeff. 40%) and another at the end (60%).

- Lab work mark (40%): this mark takes preparing the Lab works assessed in the session, a report and an assessment (oral or written) into account.

Bibliography

J. Salençon. Mécanique des milieux continus, tomes 1 à 3. Paris: Editions de l'Ecole Polytechnique, 2002

S. Dubigeon. Mécanique des milieux continus. Paris : Lavoisier, 1998

L. Chevalier. Mécanique des systèmes et des milieux déformables. Paris : Ellipses, 2004

D. Francois, A. Pinault et A. Zaoui. Comportement mécanique des matériaux, tomes 1 et 2. Paris: Hermès Science Publications, 1993

J.-L. Fanchon. Guide de mécanique. Sciences et technologies industrielles. Paris: Nathan, 2003

S.P. Timoshenko. Résistance des matériaux, tomes 1 et 2. Paris: Dunod, 1993

Giet et L. Géminard. Résistance des matériaux, tomes 1 et 2. Paris: Dunod, 1997

M. Kerguignas, G. Caignaert. Résistance des matériaux. Paris : Dunod, 1993

J.E. Gordon. Structures et matériaux. Paris : Belin, 1994

D. Bellet et J.J.Barrau, Cours d'élasticité. Toulouse : Cépaduès Editions, 1990

J. Duc et D. Bellet, Problèmes d'élasticité, Toulouse : Cépaduès Editions

L.Chevalier, Exercices et problèmes corrigés de mécanique des systèmes. Paris : Ellipses

H. Dumontet, G. Duvaut, F. Léné, P. Muller, N. Turbé. Exercices de mécanique des milieux continus. Paris : Masson, 1994

M. Fourar, C. Chèze, Mécanique des milieux déformables. Paris : Ellipses, 2002